#1 Dimensional Array
import numpy as np
n1 = np.array([1,2,3,4,5,6])
print(n1)
print(type(n1))
[1 2 3 4 5 6]
<class 'numpy.ndarray'>
#2 Dimensional Array
import numpy as np
n2 = np.array([[5,6,7,8,9,10],[50,51,52,53,54,55]])
print(n2)
print(type(n2))
[[ 5 6 7 8 9 10]
[50 51 52 53 54 55]]
<class 'numpy.ndarray'>
#Initialize with Zeros - fill the array with zeros
import numpy as np
n3 = np.zeros(6)
print(n3)
[0. 0. 0. 0. 0. 0.]
import numpy as np
n4 = np.zeros((4,4))
print(n4)
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
import numpy as np
n5 = np.zeros((5,3,2))
print(n5)
[[[0. 0.]
[0. 0.]
[0. 0.]]
[[0. 0.]
[0. 0.]
[0. 0.]]
[[0. 0.]
[0. 0.]
[0. 0.]]
[[0. 0.]
[0. 0.]
[0. 0.]]
[[0. 0.]
[0. 0.]
[0. 0.]]]
#Fill the array with a constant value
n5 = np.full((2,3),5)
print(n5)
[[5 5 5]
[5 5 5]]
n6 = np.full((2,6),3)
print(n6)
[[3 3 3 3 3 3]
[3 3 3 3 3 3]]
n7 = np.full((5),6)
print(n7)
[6 6 6 6 6]
#fill with a range (arange)
n1 = np.arange(10,50,2.5)
print(n1)
[10 11 12 13 14 15 16 17 18 19]
n1 = np.arange(10,50,2.5)
print(n1)
[10. 12.5 15. 17.5 20. 22.5 25. 27.5 30. 32.5 35. 37.5 40. 42.5
45. 47.5]
n1 = np.arange(10,50,7)
print(n1)
[10 17 24 31 38 45]
#fill with random integer values
n1 = np.random.randint(1,100,10)
print(n1)
[55 65 10 38 86 97 35 55 11 99]
n1 = np.random.randint(5,55,5)
print(n1)
[37 27 28 11 53]
#shape of the array
n1 = np.array([ [1,2,3],[4,3,2] ])
print(n1)
(2,3)
n1 = np.array([ [1,2,3],[4,3,2] ,[53,2,3] ])
print(n1.shape)
(3, 3)
#stacking examples - vstack, hstack,column_stack
#vstack
n1 = np.array([2,6,3])
n2 = np.array([6,3,8])
np.vstack((n1,n2))
array([[2, 6, 3],
[6, 3, 8]])
n1 = np.array([2,6,3])
n2 = np.array([6,3,8])
n3 = np.array([10,20,33])
np.vstack((n1,n2,n3))
array([[ 2, 6, 3],
[ 6, 3, 8],
[10, 20, 33]])
#hstack
n1 = np.array([2,6,3])
n2 = np.array([6,3,8])
np.hstack((n1,n2))
array([2, 6, 3, 6, 3, 8])
n1 = np.array([2,6,3])
n2 = np.array([6,3,8])
n3 = np.array([10,20,33])
np.vstack((n1,n2,n3))
array([[ 2, 6, 3],
[ 6, 3, 8],
[10, 20, 33]])
#column_stack
n1 = np.array([2,6,3])
n2 = np.array([6,3,8])
np.column_stack((n1,n2))
array([[2, 6],
[6, 3],
[3, 8]])
n1 = np.array([2,6,3])
n2 = np.array([6,3,8])
n3 = np.array([10,20,33])
np.column_stack((n1,n2,n3))
array([[ 2, 6, 10],
[ 6, 3, 20],
[ 3, 8, 33]])
n1 = np.array([2,6,3])
n2 = np.array([6,3,8])
n3 = np.array([10,20,33])
n4 = np.array([55,33,66])
np.column_stack((n1,n2,n3,n4))
array([[ 2, 6, 10, 55],
[ 6, 3, 20, 33],
[ 3, 8, 33, 66]])
#intersection
import numpy as np
n1 = np.array([1,2,3,4,5,6])
n2 = np.array([5,6,7,8,9])
np.intersect1d(n1,n2)
array([5, 6])
import numpy as np
n1 = np.array([1,2,3,4,5,6])
n2 = np.array([5,6,7,8,9])
np.intersect1d(n2,n1)
array([5, 6])
#difference
import numpy as np
n1 = np.array([1,2,3,4,5,6])
n2 = np.array([5,6,7,8,9])
np.setdiff1d(n1,n2)
array([1, 2, 3, 4])
import numpy as np
n1 = np.array([1,2,3,4,5,6])
n2 = np.array([5,6,7,8,9])
np.setdiff1d(n2,n1)
array([7, 8, 9])
import numpy as np
n1 = np.array([1,2,3,4,5,6])
n2 = np.array([1,2,3,4,5,6])
np.setdiff1d(n1,n2)
array([], dtype=int32)
#Sum
import numpy as np
n1 = np.array([10,20,30])
n2 = np.array([40,50,60])
np.sum([n1,n2])
210
np.sum([n1,n2],axis=0) #axis 0 : x axis - horizontal
array([50, 70, 90])
np.sum([n1,n2],axis=1) #axis 1 : y axis - vertical
array([ 60, 150])
import numpy as np
n1 = np.array([1,2,3,4,5,6])
n2 = np.array([7,8,9,10,11,12])
n3 = np.array([10,20,30,40,50,60])
n4 = np.array([100,200,300,400,500,600])
np.sum([n1,n2,n3,n4])
2388
np.sum([n1,n2,n3,n4],axis=0)
array([118, 230, 342, 454, 566, 678])
np.sum([n1,n2,n3,n4],axis=1)
array([ 21, 57, 210, 2100])
Numpy Array Mathemetics
#Addition
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 + 1
print(n1)
[56 34 45 67 23 12 78]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 + 10
print(n1)
[65 43 54 76 32 21 87]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 - 1
print(n1)
[54 32 43 65 21 10 76]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 - 10
print(n1)
[45 23 34 56 12 1 67]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 * 5
print(n1)
[275 165 220 330 110 55 385]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 * 55
print(n1)
[3025 1815 2420 3630 1210 605 4235]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 / 2.0
print(n1)
[27.5 16.5 22. 33. 11. 5.5 38.5]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 / 5
print(n1)
[11. 6.6 8.8 13.2 4.4 2.2 15.4]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 ** 3
print(n1)
[166375 35937 85184 287496 10648 1331 456533]
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
n1 = n1 / (3 * 3)
print(n1)
[6.11111111 3.66666667 4.88888889 7.33333333 2.44444444 1.22222222 8.55555556]
#statistics functions
import numpy as np
n1 = np.array([55,33,44,66,22,11,77])
np.mean(n1)
np.sum(n1) / len(n1) # mean is nothing but average
44.0
#middle element
import numpy as np
n1 = np.array([11,77,33,44,66,22])
np.median(n1)
38.5
#standard deviation
import numpy as np
n1 = np.array([11,77,33,44,66,22])
np.std(n1)
23.262392157490787
#saving and Loading
import numpy as np
n1 = np.array([1,2,3,5,4,6,7,9,8,10,22])
np.save('result',n1) #saving
n2 = np.load('result.npy') #loading
print(n2*10)
[ 10 20 30 50 40 60 70 90 80 100 220]
No comments:
Post a Comment